\(\int \frac {x^2 (a+b \log (c x^n))}{d+e x^r} \, dx\) [410]

   Optimal result
   Rubi [N/A]
   Mathematica [B] (verified)
   Maple [N/A]
   Fricas [N/A]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 23, antiderivative size = 23 \[ \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx=\text {Int}\left (\frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r},x\right ) \]

[Out]

Unintegrable(x^2*(a+b*ln(c*x^n))/(d+e*x^r),x)

Rubi [N/A]

Not integrable

Time = 0.05 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx=\int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx \]

[In]

Int[(x^2*(a + b*Log[c*x^n]))/(d + e*x^r),x]

[Out]

Defer[Int][(x^2*(a + b*Log[c*x^n]))/(d + e*x^r), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(87\) vs. \(2(26)=52\).

Time = 0.08 (sec) , antiderivative size = 87, normalized size of antiderivative = 3.78 \[ \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx=\frac {x^3 \left (-b n \, _3F_2\left (1,\frac {3}{r},\frac {3}{r};1+\frac {3}{r},1+\frac {3}{r};-\frac {e x^r}{d}\right )+3 \operatorname {Hypergeometric2F1}\left (1,\frac {3}{r},\frac {3+r}{r},-\frac {e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )\right )}{9 d} \]

[In]

Integrate[(x^2*(a + b*Log[c*x^n]))/(d + e*x^r),x]

[Out]

(x^3*(-(b*n*HypergeometricPFQ[{1, 3/r, 3/r}, {1 + 3/r, 1 + 3/r}, -((e*x^r)/d)]) + 3*Hypergeometric2F1[1, 3/r,
(3 + r)/r, -((e*x^r)/d)]*(a + b*Log[c*x^n])))/(9*d)

Maple [N/A]

Not integrable

Time = 0.06 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00

\[\int \frac {x^{2} \left (a +b \ln \left (c \,x^{n}\right )\right )}{d +e \,x^{r}}d x\]

[In]

int(x^2*(a+b*ln(c*x^n))/(d+e*x^r),x)

[Out]

int(x^2*(a+b*ln(c*x^n))/(d+e*x^r),x)

Fricas [N/A]

Not integrable

Time = 0.30 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.26 \[ \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )} x^{2}}{e x^{r} + d} \,d x } \]

[In]

integrate(x^2*(a+b*log(c*x^n))/(d+e*x^r),x, algorithm="fricas")

[Out]

integral((b*x^2*log(c*x^n) + a*x^2)/(e*x^r + d), x)

Sympy [N/A]

Not integrable

Time = 4.02 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.87 \[ \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx=\int \frac {x^{2} \left (a + b \log {\left (c x^{n} \right )}\right )}{d + e x^{r}}\, dx \]

[In]

integrate(x**2*(a+b*ln(c*x**n))/(d+e*x**r),x)

[Out]

Integral(x**2*(a + b*log(c*x**n))/(d + e*x**r), x)

Maxima [N/A]

Not integrable

Time = 0.24 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )} x^{2}}{e x^{r} + d} \,d x } \]

[In]

integrate(x^2*(a+b*log(c*x^n))/(d+e*x^r),x, algorithm="maxima")

[Out]

integrate((b*log(c*x^n) + a)*x^2/(e*x^r + d), x)

Giac [N/A]

Not integrable

Time = 0.35 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )} x^{2}}{e x^{r} + d} \,d x } \]

[In]

integrate(x^2*(a+b*log(c*x^n))/(d+e*x^r),x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)*x^2/(e*x^r + d), x)

Mupad [N/A]

Not integrable

Time = 0.48 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx=\int \frac {x^2\,\left (a+b\,\ln \left (c\,x^n\right )\right )}{d+e\,x^r} \,d x \]

[In]

int((x^2*(a + b*log(c*x^n)))/(d + e*x^r),x)

[Out]

int((x^2*(a + b*log(c*x^n)))/(d + e*x^r), x)